Appendix#

This appendix contains lists of all probability density distributions and all kernels that GRAMPC-S supports.

List of probability density functions#

The following list contains all probability density functions that are implemented in GRAMPC-S. Note that it is possible to implement your own probability density functions. These must be declared as derived from the Distribution class.

Table 1 Overview of the available probability distributions and associated parameters.#

Name

Probability density function

Parameters

Gaussian distribution

\(p(\vm x) = \left(2 \pi\right)^{-\frac{d}{2}} \det(\vm \Sigma)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} (\vm x - \vm \mu)^T \vm \Sigma^{-1} (\vm x - \vm \mu)\right)\)

\(\vm \mu \in \mathbb{R}^d\) \(\vm \Sigma \in \mathbb{R}^{d \times d}\)

Beta distribution

\(p(x) = \frac{1} {B(p, q)} \, x^{p-1} \,(1 - x)^{q - 1}\)

\(p>0\,, \; q >0\)

Chi-squared distribution

\(p(x) = \frac{x^{\frac{n}{2} - 1} \,\exp\left(-\frac{x}{2}\right)}{\Gamma(\frac{n}{2}) \, 2^{\frac{n}{2}}}\)

\(n>0\)

Exponential distribution

\(p(x) = \lambda \exp(-\lambda \, x)\)

\(\lambda >0\)

Extreme value distribution

\(p(x) = \frac{1}{b} \exp\left(\frac{a - x}{b} - \exp\left(\frac{a - x}{b}\right)\right)\)

\(a \in \mathbb{R}\,,\; b>0\)

F-distribution

\(p(x) = \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2} \right) \Gamma\left( \frac{n}{2}\right)} \left(\frac{m}{n}\right)^\frac{m}{2} x^{\frac{m}{2} - 1} (1 + \frac{m}{n} x)^{-\frac{m+n}{2}}\)

\(m>0\,,\; n >4\)

Gamma distribution

\(p(x) = \frac{\exp\left(-\frac{x}{\beta}\right)}{\beta^\alpha \, \Gamma(\alpha)} \, x^{\alpha - 1}\)

\(\alpha > 0\,,\; \beta > 0\)

Log-normal distribution

\(p(x) = \frac{1}{\sigma x \sqrt{2 \pi}} \exp\left(- \frac{(\ln(x)-\mu)^2} {2 \sigma^2}\right)\)

\(\mu \in \mathbb{R} \,,\; \sigma > 0\)

Piecewise constant distribution

Histogram of an arbitrary distribution

Student’s t-distribution

\(p(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sigma \sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{\nu}\right)^{-\frac{\nu+1}{2}}\)

\(\mu \in \mathbb{R} \,,\; \sigma > 0\) \(\nu > 2\)

Uniform distribution

\(p(x) = \frac{1}{b - a}\)

\(a < b\)

Weibull distribution

\(p(x) = \frac{a}{b} \left(\frac{x}{b}\right)^{a-1} \exp(-\left(\frac{x}{b}\right)^a)\)

\(a> 0\,,\; b > 0\)

Product of uncorrelated distributions

\(\displaystyle p(\vm x) = \prod_{i=1}^d p_i(x_i)\)

List of kernels for Gaussian processes#

The following list contains all kernels that are implemented in GRAMPC-S. Note that it is possible to implement your own kernels. These must be declared as derived from the StationaryKernel class.

Table 2 Overview of the available kernel functions and associated parameters.#

Name

Kernel

Parameters

Squared exponential kernel

\(k(\tau) = \sigma^2 \exp\left(-\frac12 \sum\limits_i \left(\frac{\tau_i^2}{l_i^2}\right)\right)\)

\(\sigma\), \(\vm l\)

Periodic kernel

\(k(\tau) = \sigma^2 \exp\left(-2 \sum\limits_i \left(\frac{\sin^2\left(\pi \frac{\tau_i}{p_i}\right)}{l_i^2}\right)\right)\)

\(\sigma\), \(\vm l\), \(\vm p\)

Locally periodic kernel

\(k(\tau) = \sigma^2 \exp\left(-2 \sum\limits_i\left(\frac{\sin^2(\pi \frac{\tau_i}{p_i})}{l_i^2}\right)\right) \exp\left(-\frac12 \sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)\right)\)

\(\sigma\), \(\vm l\), \(\vm p\)

Matern 3/2 kernel

\(k(\tau) = \sigma^2 \left(1 + \sqrt{3 \sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)} \right) \exp\left(- \sqrt{ 3\sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)} \right)\)

\(\sigma\), \(\vm l\)

Matern 5/2 kernel

\(k(\tau) = \sigma^2 \left(1 + \sqrt{5 \sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)} + \frac{5}{3} \sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)\right) \exp\left(- \sqrt{5 \sum\limits_i\left(\frac{\tau_i^2}{l_i^2}\right)}\right)\)

\(\sigma\), \(\vm l\)

Sum of kernels

\(k(\tau) = k_1(\tau) + k_2(\tau)\)

Product of kernels

\(k(\tau) = k_1(\tau) k_2(\tau)\)